

Introduction

[image: Documentation Status]
 [https://circuitpython-ahrs.readthedocs.io/][image: Discord]
 [https://adafru.it/discord][image: Build Status]
 [https://github.com/gamblor21/CircuitPython_AHRS/actions][image: Code Style: Black]
 [https://github.com/psf/black]AHRS library for CircuitPython

This library contains right now one alogrithm for AHRS - Attitude and Heading Reference System.
It is used to combine multiple sensor values to give a heading, pitch and roll value such as used
by aircraft.

See the Wiki [https://github.com/gamblor21/CircuitPython_AHRS/wiki] for a more complete description.

Dependencies

This library depends on:

	Adafruit CircuitPython [https://github.com/adafruit/circuitpython]

Please ensure all dependencies are available on the CircuitPython filesystem.
This is easily achieved by downloading
the Adafruit library and driver bundle [https://circuitpython.org/libraries].

Usage Example

Create the filter, set the parameters and start feeding it sensor data

filter = mahony.Mahony(Kp, Ki, sample_frequency)

while True:
 filter.update(gx, gy, gz, ax, ay, az, mx, my, mz)

Caution

The calculations are very processor intensive. I have tested this on an Adafruit Feather M4 Express.
Mahony was able to do about 300 samples/sec
Madgwick was only able to about 15 samples/sec

Also be careful which values you feed the filter and the orientation of your sensor.
I turned the gryoscope/accelerometer off to make sure magnetic fields were correct and then
turned on only the gyroscope/accelerometer to ensure they were correct.

Contributing

Contributions are welcome! Please read our Code of Conduct [https://github.com/gamblor21/CircuitPython_AHRS/blob/master/CODE_OF_CONDUCT.md]
before contributing to help this project stay welcoming.

Documentation

Table of Contents

Examples

	Simple test

API Reference

	mahony
	Implementation Notes

Other Links

	Download [https://github.com/gamblor21/CircuitPython_AHRS/releases/latest]

	CircuitPython Reference Documentation [https://circuitpython.readthedocs.io]

	CircuitPython Support Forum [https://forums.adafruit.com/viewforum.php?f=60]

	Discord Chat [https://adafru.it/discord]

	Adafruit Learning System [https://learn.adafruit.com]

	Adafruit Blog [https://blog.adafruit.com]

	Adafruit Store [https://www.adafruit.com]

Indices and tables

	Index

	Module Index

	Search Page

Simple test

Ensure your device works with this simple test.

examples/mahony_simpletest.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101

	##
This test file has calibration values for my device
Anyone else will have to calibrate and set their own values
##
Only calibrates for the gryo and hardiron offsets
Set to run on the Adafruit LSM9DS1 over I2C cause that is what I have
##

import time
import board
import busio
import adafruit_lsm9ds1
import mahony

MAG_MIN = [-0.5764, 0.0097, -0.5362]
MAG_MAX = [0.4725, 0.9919, 0.4743]

Used to calibrate the magenetic sensor
def map_range(x, in_min, in_max, out_min, out_max):
 """
 Maps a number from one range to another.
 :return: Returns value mapped to new range
 :rtype: float
 """
 mapped = (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min
 if out_min <= out_max:
 return max(min(mapped, out_max), out_min)

 return min(max(mapped, out_max), out_min)

create the ahrs_filter
ahrs_filter = mahony.Mahony(50, 5, 100)

create the sensor
i2c = busio.I2C(board.A3, board.A2)
sensor = adafruit_lsm9ds1.LSM9DS1_I2C(i2c)

count = 0 # used to count how often we are feeding the ahrs_filter
lastPrint = time.monotonic() # last time we printed the yaw/pitch/roll values
timestamp = time.monotonic_ns() # used to tune the frequency to approx 100 Hz

while True:
 # on an Feather M4 approx time to wait between readings
 if (time.monotonic_ns() - timestamp) > 6500000:

 # read the magenetic sensor
 mx, my, mz = sensor.magnetic

 # adjust for magnetic calibration - hardiron only
 # calibration varies per device and physical location
 mx = map_range(mx, MAG_MIN[0], MAG_MAX[0], -1, 1)
 my = map_range(my, MAG_MIN[1], MAG_MAX[1], -1, 1)
 mz = map_range(mz, MAG_MIN[2], MAG_MAX[2], -1, 1)

 # read the gyroscope
 gx, gy, gz = sensor.gyro
 # adjust for my gyro calibration values
 # calibration varies per device and physical location
 gx -= 1.1250
 gy -= 3.8732
 gz += 1.2834

 # read the accelerometer
 ax, ay, az = sensor.acceleration

 # update the ahrs_filter with the values
 # gz and my are negative based on my installation
 ahrs_filter.update(gx, gy, -gz, ax, ay, az, mx, -my, mz)

 count += 1
 timestamp = time.monotonic_ns()

 # every 0.1 seconds print the ahrs_filter values
 if time.monotonic() > lastPrint + 0.1:
 # ahrs_filter values are in radians/sec multiply by 57.20578 to get degrees/sec
 yaw = ahrs_filter.yaw * 57.20578
 if yaw < 0: # adjust yaw to be between 0 and 360
 yaw += 360
 print(
 "Orientation: ",
 yaw,
 ", ",
 ahrs_filter.pitch * 57.29578,
 ", ",
 ahrs_filter.roll * 57.29578,
)
 print(
 "Quaternion: ",
 ahrs_filter.q0,
 ", ",
 ahrs_filter.q1,
 ", ",
 ahrs_filter.q2,
 ", ",
 ahrs_filter.q3,
)

 # print("Count: ", count) # optionally print out frequency
 count = 0 # reset count
 lastPrint = time.monotonic()

mahony

AHRS library for CircuitPython
Mahony Algorithm

Madgwick’s implementation of Mayhony’s AHRS algorithm.
See: http:##www.x-io.co.uk/open-source-imu-and-ahrs-algorithms/

From the x-io website “Open-source resources available on this website are
provided under the GNU General Public Licence unless an alternative licence
is provided in source.”

Original Information
Date Author Notes
29/09/2011 SOH Madgwick Initial release
02/10/2011 SOH Madgwick Optimised for reduced CPU load
Algorithm paper:
http:##ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4608934&url=http%3A%2F%2Fieeexplore.ieee.org%2Fstamp%2Fstamp.jsp%3Ftp%3D%26arnumber%3D4608934

This version based upon AdaFruit AHRS https://github.com/adafruit/Adafruit_AHRS

	Author(s): Mark Komus

Implementation Notes

Hardware:

Any 9DOF sensor

Software and Dependencies:

	Adafruit CircuitPython firmware for the supported boards:
https://github.com/adafruit/circuitpython/releases

	
class gamblor21_ahrs.mahony.Mahony(Kp=0.5, Ki=0.0, sample_freq=100)

	AHRS Mahony algorithm.

	
Ki

	The current Ki value (Integral gain).

	
Kp

	The current Kp value (Proportional gain).

	
compute_angles()

	Compute all the angles if there have been new samples (internal use)

	
pitch

	Current pitch (y-axis) value in radians/sec. (read-only)

	
roll

	Current roll (x-axis) value in radians/sec. (read-only)

	
sample_freq

	The current sample frequency value in Hertz.

	
update(gx, gy, gz, ax, ay, az, mx, my, mz)

	Call this function sample_freq times a second with values from your sensor
The units of the accelerometer and magnetometer do not matter for this alogirthm
The gryoscope must be in degrees/sec

	Parameters

	
	gy, gz (gx,) – Gyroscope values in degrees/sec

	ay, az (ax,) – Accelerometer values

	my, mz (mx,) – Magnetometer values

	
update_IMU(gx, gy, gz, ax, ay, az)

	Called is was have no mag reading (internal use)

	
yaw

	Current yaw (z-axis) value in radians/sec. (read-only)

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 gamblor21_ahrs	

 	
 	
 gamblor21_ahrs.mahony	

Index

 C
 | G
 | K
 | M
 | P
 | R
 | S
 | U
 | Y

C

 	
 	compute_angles() (gamblor21_ahrs.mahony.Mahony method)

G

 	
 	gamblor21_ahrs.mahony (module)

K

 	
 	Ki (gamblor21_ahrs.mahony.Mahony attribute)

 	
 	Kp (gamblor21_ahrs.mahony.Mahony attribute)

M

 	
 	Mahony (class in gamblor21_ahrs.mahony)

P

 	
 	pitch (gamblor21_ahrs.mahony.Mahony attribute)

R

 	
 	roll (gamblor21_ahrs.mahony.Mahony attribute)

S

 	
 	sample_freq (gamblor21_ahrs.mahony.Mahony attribute)

U

 	
 	update() (gamblor21_ahrs.mahony.Mahony method)

 	
 	update_IMU() (gamblor21_ahrs.mahony.Mahony method)

Y

 	
 	yaw (gamblor21_ahrs.mahony.Mahony attribute)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Introduction

 		
 Simple test

 		
 mahony

 		
 Implementation Notes

_static/up-pressed.png

_static/up.png

